THE SOFTWARE PLATFORM
FOR SEAMLESS ORCHESTRATION
OF AUTONOMOUS ROBOTICS

WWW.UNMANNED.LIFE

JORGE MUÑOZ
VP Business and Marketing
Jorge@unmanned.life
WE ARE SHAPING THE AUTONOMOUS FUTURE BY ENABLING AUTONOMOUS ROBOTICS APPLICATIONS FOR ENTERPRISES AND INDUSTRIES

15 Live Projects 10 Countries Deployed In 10 Major Awards

+30 Ecosystem Partners 25 Employees

INVESTED BY: FEATURED BY:

THUMS

Jorge Muñoz
Jorge@unmanned.life

UM AUTONOMOUS SYSTEMS LTD © 2023
The Challenge

FRAGMENTATION OF ROBOTICS

AUTONOMOUS DRONES AND ROBOTS ARE GOING TO REACH A CEILING IN THE EFFICIENCIES THEY PROVIDE TO BUSINESSES

- Each robot runs on different proprietary hardware and software
- Drones and robots cannot function together using the same language
- Network interoperability is a challenge preventing scalability in deployments

18M industrial robots

17M commercial drones

(Oxford Economics) (GSMA)
Our Solution

Enhance the Entire Ecosystem Through:

ONE PLATFORM

to autonomously deploy, control, and orchestrate fleets of robots and drones

Jorge Muñoz
Jorge@unmanned.life
How Our **Software Platform** Solves this Fragmentation

1. **Control** off-the-shelf commercial robots
2. **Connect** them to the central platform
3. **Fuse** data from various systems
4. **Enable** autonomous applications at scale

JORGE MUÑOZ
Jorge@unmanned.life
Mobile robots such as AMR’s, UAV’s, AGV’s require wireless communication and computational resources. Combining and optimizing computational resources using edge computing in combination with secure network environments for connectivity such as 5G enables secure and add scale deployment of robotic swarms.

Key 5G Features

- Time sensitive applications
- Data sensitive applications
- Ultra reliable Low Latency Communications (uRLLC)
- Quality of Service
- Local Policy
- Enhanced Mobile Broadband (eMBB)
- Higher Fidelity for features (i.e. 3D sensing and object recognition)
- More Intelligence on the EDGE
- Larger number of devices as an autonomous swarm
- 3D sensing, Local mapping, human detection, routing
- Big Data/ AI processes
- Navigation
- Voice, Image, Object recognition
- Motion control, collision avoidance
- Emergency mission

E2E Latency

Reliability

5G Mobile EDGE Computing

Peak Data Rate

Data Volume

Service Deployment

Energy Efficiency

Connected Devices

Network slicing

Data privacy

Security

Ultra Trust

Critical Connectivity

Emergency mission

Quality of Service

Reliability

Mobility

Big Data/ AI processes

Navigation

Voice, Image, Object recognition

3D sensing, Local mapping, human detection, routing

Motion control, collision avoidance

Emergency mission
Functional Architecture Layers

<table>
<thead>
<tr>
<th>L7</th>
<th>User Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>L6</td>
<td>Business Information Systems</td>
</tr>
<tr>
<td>L5</td>
<td>Mission Management</td>
</tr>
<tr>
<td>L4</td>
<td>Decision Management</td>
</tr>
<tr>
<td>L3.B</td>
<td>Data Management</td>
</tr>
<tr>
<td>L3.A</td>
<td>Device Management</td>
</tr>
<tr>
<td>L2.B</td>
<td>Infrastructure</td>
</tr>
<tr>
<td>L2.A</td>
<td>Network</td>
</tr>
<tr>
<td>L1.C</td>
<td>Device Integration</td>
</tr>
<tr>
<td>L1.B</td>
<td>Logical Device Control</td>
</tr>
<tr>
<td>L1.A</td>
<td>Devices</td>
</tr>
</tbody>
</table>

Core Functions

- **Orchestration**: Simplified Autonomous Mission Design / Configuration / Management capability via Unmanned Life UI
- **AI Decision Making**: Advanced, heterogeneous, real-time decision making using proprietary integrated algorithm suite
- **Sensor Data Fusion**: Real-time on-board and external sensors sensor data-fusion for situational awareness, mobility control
- **Swarm Control**: Orchestration and coordination of multiple types of robots and IoT devices, to work together in real-time

Jorge Muñoz
Jorge@unmanned.life

UM AUTONOMOUS SYSTEMS LTD © 2023
Unmanned Life’s Applications

Sustainability
- Reforestation
- Wildfire Mitigation
- Emissions Detection

Security
- Surveillance
- Emergency Response
- Asset Inspections

Supply-chain
- Smart Manufacturing
- Smart Logistics
- Last Mile-delivery

JORGE MUÑOZ
Jorge@unmanned.life
Introducing New Use Cases – Traditional Approach

Use case A
- NEST Charger A
- Controller A
- Controller A*
- Software A
- Interface A
- Integration A

Use case B
- NEST Charger B
- Controller B
- Controller B*
- Software B
- Interface B
- Integration B

Use case C
- NEST Charger C
- Controller C
- Controller C*
- Software C
- Interface C
- Integration C
Platform Approach With Unmanned Life

Use case A
- NEST Charger A
- UL-ACE

Use case B
- NEST Charger B
- UL-ACE

Use case C
- Charger C
- UL-ACE

TELCO

UL-ACE

UL-CCP

UL-WEB

API

5G 4G LTE

MEC

Integrations

UL

Platform

Interface

UL

UL

UL

Ul

TELCO

Integrations

UL

Platform

Interface

UL
Benefits Of A Platform Approach

Scalability
- Modular across applications, meaning the same system can be used across several use cases
- Reduced integration cycles
- Unified interface
- Centralised data management

Security
- Layered safety mechanisms
- Platform-level best practices
- Platform already vetted by telcos and critical infrastructure companies

Less dependency on hardware and vendors
- Hardware agnostic
- Platform supports entire robotic roadmap
- Quickly add applications to existing systems and processes